VIBRATIONS

11 février 2008

Lionel ARNAUD, Serge CAPERAA, Sébastien SEGUY

Laboratoire Génie de Production - Équipe C.M.A.O

École Nationale d’Ingénieurs de Tarbes - 47 av d’Azereix BP 1629 - 65016 Tarbes Cedex France
Table des matières

1 **Systèmes discrets à un degré de liberté** 5
 1.1 Équation de la dynamique .. 5
 1.2 Étude en mouvement libre \((F = 0)\) 6
 1.2.1 Solution générale .. 6
 1.2.2 Cas des systèmes non amortis \((\xi = 0)\) 7
 1.2.3 Cas des systèmes sur-amortis \((\xi > 1)\) 7
 1.2.4 Cas des systèmes sous-amortis \((\xi < 1)\) 7
 1.3 Étude de la réponse en mouvement forcé harmonique 8
 1.3.1 Système non amorti \((\xi = 0)\) 9
 1.3.2 Système sous amorti \((0 < \xi < 1)\) 10
 1.3.3 Distinguo force ou déplacement imposé 11

2 **Systèmes discrets à deux degrés de liberté (2DDL)** 13
 2.1 Équations de la dynamique ... 13
 2.2 Solutions vibratoires, analyse modale \(\{F\} = \{0\}\) 14
 2.2.1 Rappel ... 14
 2.2.2 Problème aux valeurs propres associé 14
 2.2.3 Résolution du problème aux valeurs propres et vecteurs propres, analyse modale 14
 2.2.4 M et K orthogonalité, raideurs et masses modales 15
 2.2.5 Découplage des équations 16
 2.2.6 Réponse en mouvement libre \(\{F\} = \{0\}\) 17
 2.2.7 Réponse en excitation forcée 19
 2.2.8 Cas amorti ... 19

3 **Systèmes continus : vibrations des poutres** 21
 3.1 Vibrations longitudinales des poutres droites 21
 3.1.1 Équation du mouvement \((PFD + RC)\) 21
 3.1.2 Solution générale en mouvement libre 22
 3.1.3 Cas de la poutre encastrée-libre 23
 3.1.4 Autres cas de conditions aux limites \((c.f.\ TD)\) 23
 3.1.5 Vibrations forcées ... 24
 3.2 Vibrations transversales des poutres droites 24
 3.2.1 Équation du mouvement \((PFD + RC)\) 24
 3.2.2 Solution générale en mouvement libre 25
3.2.3 Cas de la poutre encastrée-libre ... 26
3.2.4 Autres cas de conditions aux limites (c.f. TD) 27

4 Méthodes énergétiques : solutions approchées (initiation aux éléments finis) 29

4.1 Préalinaire : illustration de calculs par éléments finis 29
4.2 Théorème de l’énergie cinétique .. 30
4.3 Énergie de quelques composants .. 30
 4.3.1 Ressort ... 31
 4.3.2 Masse ... 31
 4.3.3 Poutre en elongation ... 31
 4.3.4 Poutre en flexion ... 32
 4.3.5 Poutre en torsion ... 33
4.4 Méthode de Rayleigh ... 33
 4.4.1 Principe de la méthode ... 33
4.5 Méthode des Éléments Finis ... 34
 4.5.1 Interpolation ... 34
 4.5.2 Énergie cinétique et énergie de déformation 35
 4.5.3 Système matriciel ... 36
Chapitre 1

Systèmes discrets à un degré de liberté

1.1 Équation de la dynamique

Le ressort de raideur k exerce une force $-kx$ sur la masse ; l’amortisseur de coefficient c exerce quant à lui une force $-c\dot{x}$. L’équation fondamentale de la dynamique s’écrit, en isolant la masse m :

$$m\ddot{x}(t) = F(t) - c\dot{x}(t) - kx(t)$$ \hspace{1cm} (1.1)

Toutes les fonctions dépendant du temps, nous omettrons désormais l’écriture de la dépendance pour alléger les écritures.

$$m\ddot{x} + c\dot{x} + kx = F$$

La solution se décompose classiquement, à l’aide d’une solution particulière $x_{s.p.}$ de l’équation sans second membre et de la solution générale $x_{s.g.}$ de l’équation homogène :

$$x(t) = x_{s.p.} + x_{s.g.}$$

La masse peut par exemple correspondre à l’ensemble carrosserie-bloc moteur d’un véhicule, l’amortissement à ses amortisseurs, la raideur à sa suspension.

Remarque : ce type d’équation se retrouve aussi couramment pour les circuits électriques RLC, par exemple le circuit RLC série donne :

\begin{center}
\begin{figure}
\end{figure}
\end{center}
\[L\ddot{I} + R\dot{I} + \frac{I}{C} = \dot{U} \]

Fig. 1.2 – Circuit RLC Série

1.2 Étude en mouvement libre \((F = 0)\)

1.2.1 Solution générale

\[m\ddot{x} + c\dot{x} + kx = 0 \] (1.2)

Les solutions sont recherchées sous la forme \(x = Ae^{rt}, \ r \in \mathbb{C}\.\) En reportant cette forme dans l’équation de la dynamique, on obtient l’équation caractéristique :

\[mr^2 + cr + k = 0 \] (1.3)

dont les racines, réelles ou imaginaires, sont, en posant \(\Delta = c^2 - 4mk\) et \(j^2 = -1\)

\[r_{1,ou2} = -\frac{c}{2m} \pm \frac{\sqrt{\Delta}}{2m} si \Delta > 0, \ ou \ r_{1,ou2} = -\frac{c}{2m} \pm j\frac{\sqrt{-\Delta}}{2m} si \Delta < 0 \]

En posant :

\[\omega_0 = \sqrt{\frac{k}{m}} \] (1.4)

\[\xi = \frac{c}{c_c} (\text{prononcer ksi}) \] (1.5)

avec \(c_c\) le coefficient d’amortissement «critique» qui correspond à une valeur nulle du discriminant :

\[c_c = 2\sqrt{km} = 2m\omega_0 \Rightarrow c = 2m\xi\omega_0 \Rightarrow \Delta = c_c^2(\xi^2 - 1) \] (1.6)

les solutions \(r_1\) et \(r_2\) peuvent se mettre sous la forme :

\[r_{1,ou2} = -\xi\omega_0 \pm \omega_0\sqrt{\xi^2 - 1}, \ si \ \Delta > 0, \ ou \ r_{1,ou2} = -\xi\omega_0 \pm j\omega_0\sqrt{1 - \xi^2}, \ si \ \Delta < 0 \] (1.7)

La forme de la solution dépend alors de la valeur du facteur d’amortissement \(\xi\).

On peut ainsi écrire l’équation sous la forme réduite :

\[\ddot{x} + 2\xi\omega_0\dot{x} + \omega_0^2x = 0 \] (1.8)
1.2.2 Cas des systèmes non amortis ($\xi = 0$)

L’équation d’équilibre devient alors :

$$\ddot{x} + \omega_0^2 x = 0 \quad (1.9)$$

La solution s’écrit :

$$x(t) = A_1 \sin(\omega_0 t) + A_2 \cos(\omega_0 t) \quad (1.10)$$

On dit que le système vibre à sa pulsation libre :

$$\omega_0 = \sqrt{\frac{k}{m}} \quad (1.11)$$

On détermine généralement les constantes réelles A_1 et A_2 par les conditions initiales.

1.2.3 Cas des systèmes sur-amortis ($\xi > 1$)

Les racines r_1 et r_2 sont réelles. La solution s’écrit :

$$x(t) = A_1 \exp\left[\left(-\xi + \sqrt{\xi^2 - 1}\right)\omega_0 t\right] + A_2 \exp\left[\left(-\xi - \sqrt{\xi^2 - 1}\right)\omega_0 t\right] \quad (1.12)$$

Il s’agit de la somme de deux fonctions exponentielles réelles. Si on trace le graphe de cette fonction, on se rend compte que la solution n’oscille pas autour d’une valeur d’équilibre, et par conséquent il ne s’agit pas d’une «vibration». C’est pourquoi nous ne poursuivrons pas l’analyse.

On détermine généralement les constantes réelles A_1 et A_2 par les conditions initiales.

1.2.4 Cas des systèmes sous-amortis ($\xi < 1$)

Cette fois, les racines sont complexes :

$$r_{1,2} = -\xi \omega_0 \pm j \omega_0 \sqrt{1 - \xi^2}$$

La forme $A_1 e^{r_1 t} + A_2 e^{r_2 t}$ peut se mettre sous la forme :

$$x(t) = A_1 \exp\left[(-\xi + j \sqrt{1 - \xi^2})\omega_0 t\right] + A_2 \exp\left[(-\xi - j \sqrt{1 - \xi^2})\omega_0 t\right] \quad (1.13)$$
On dit que le système vibre à sa «pulsation amortie» :

\[\omega_a = \omega_0 \sqrt{1 - \xi^2} \]

(1.14)

Cette pulsation, qui ne dépend que des caractéristiques du système (masse, raideur, amortissement), est une grandeur intrinsèque à ce système, et c’est pourquoi on la nomme «pulsation propre» ou «pulsation naturelle» du système amorti.

On peut donc aussi écrire :

\[x(t) = e^{-\xi\omega_0 t} (B_1 \sin(\omega_a t) + B_2 \cos(\omega_a t)) \]

ou encore :

\[x(t) = A e^{-\xi\omega_0 t} \sin(\omega_a t + \Phi) \]

(1.15)

(1.16)

La figure ci-dessous montre l’allure de la réponse obtenue, il s’agit bien de vibrations, plus ou moins amorties.

Fig. 1.4 – Solution sous-amortie

Remarque : cas du système à l’amortissement critique (\(\xi = 1 \))

Lorsque \(\xi = 1 \), l’équation caractéristique ayant une racine double il faut chercher des solutions du type \((A + Bt) e^{\omega_0 t} \) : \(x(t) = (A_1 + A_2 t) e^{-\omega_0 t} \)

La même conclusion peut être tirée, il n’y a pas vraiment de vibration, on obtient la même allure de réponse que \(\xi = 1,001 \).

1.3 Étude de la réponse en mouvement forcé harmonique

Prenons par exemple la forme \(F(t) = F \sin(\Omega t) \), avec \(\Omega \) la pulsation d’excitation, l’équation différentielle du second ordre avec second membre s’écrit :

\[m\ddot{x} + c\dot{x} + kx = F \sin(\Omega t) \]

(1.17)

La solution de cette équation différentielle est formée de la solution générale \(x_{s.g.} \) de l’équation homogène (sans second membre) plus une solution particulière \(x_{s.p.} \) de l’équation avec second membre : \(x = x_{s.g.} + x_{s.p.} \).
1.3. ÉTUDE DE LA RÉPONSE EN MOUVEMENT FORCÉ HARMONIQUE

Remarque : pour avoir seulement la réponse forcée (c.à.d. \(x_{s.p.} \)) on utilise souvent la notation complexe : \(-m\omega^2 X + c j\omega X + k X = F\), en notant : \(x_{s.p.} = Im\{X \exp(\omega t)\}\). Ici nous nous intéresserons à la réponse complète (transitoire + permanent).

1.3.1 Système non amorti \((\xi = 0)\)

L’équation sans second membre \(m\ddot{x} + kx = 0\), c’est-à-dire \(\ddot{x} + \frac{k}{m}x = \ddot{x} + \omega_0^2 x = 0\), admet une solution générale de la forme \(x_{s.g.}(t) = A\sin(\omega_0 t) + B\cos(\omega_0 t)\). Compte-tenu de la forme du second membre, on cherche une solution particulière de l’équation complète de la forme \(x_{s.p.}(t) = C\sin(\Omega t)\). En reportant cette forme dans l’équation, on peut identifier \(C\) :

\[
C = \frac{F}{k - m\Omega^2} = \frac{F}{k(1 - \frac{m}{k}\Omega^2)} = \frac{F}{k(1 - \beta^2)}
\]

\(\Omega = \frac{\omega}{\omega_0}\) est appelé «rapport des fréquences», on le note :

\[
\beta = \frac{\Omega}{\omega_0}
\] (1.18)

La solution complète s’écrit alors :

\[
x(t) = x_{s.g.}(t) + x_{s.p.}(t) = A\sin(\omega_0 t) + B\cos(\omega_0 t) + \frac{1}{1 - \beta^2} \frac{F}{k} \sin(\Omega t)
\] (1.19)

On constate que cette solution comporte deux termes :

- un terme de pulsation \(\omega_0\), dépendant uniquement de la nature du système et des conditions initiales.
- un terme de pulsation \(\Omega\), et dont l’amplitude est égale à la réponse «statique» \(\frac{F}{k}\), multipliée par le terme \(\frac{1}{1 - \beta^2}\)

Ce terme \(\frac{1}{1 - \beta^2}\) est appelé «facteur d’amplification dynamique» (FAD), il correspond au coefficient multiplicateur de la réponse forcée par rapport à la solution quasi-statique. Lorsque \(\Omega = \omega_0\), ce terme tend (en théorie) vers l’infini ; on dit qu’il y a «risonance» du système, et c’est une situation qu’il faut en général éviter. La figure ci-après montre le FAD, en fonction du rapport de fréquences \(\beta\), dans le cas d’un système non amorti.

![Fig. 1.5 – Évolution du FAD non amorti en fonction du rapport des fréquences](image)
1.3.2 Système sous amorti \((0 < \xi < 1)\)

La solution générale de l’équation sans second membre est :

\[
x_{s.g.}(t) = e^{-\xi \omega_0 t} (A \sin(\omega_a t) + B \cos(\omega_a t))
\]

La solution particulière de l’équation avec second membre doit être recherchée sous la forme suivante, qui implique un déphasage possible entre la réponse et l’excitation :

\[
x_{s.p.}(t) = C \sin(\Omega t) + D \cos(\Omega t)
\]

En remplaçant dans l’équation, et par séparation des termes en sinus et en cosinus \((\Omega t)\), on obtient :

\[
x(t) = e^{-\xi \omega_0 t} (A \sin(\omega_a t) + B \cos(\omega_a t)) + \frac{F}{k} \frac{1}{(1 - \beta^2)^2 + (2\xi\beta)^2} \left[(1 - \beta^2) \sin(\Omega t) - 2\xi\beta \cos(\Omega t) \right]
\]

On constate que le premier terme disparaît quand le temps augmente, ce qui correspond au régime dit «transitoire».

Dans la suite, nous négligerons ce terme transitoire, pour ne nous intéresser qu’au terme en régime entretenu. On peut mettre ce dernier terme sous la forme :

\[
x_{s.p.}(t) = X \sin(\Omega t + \Phi)
\]

On considère donc que la réponse possède la même fréquence que l’excitation, avec une amplitude \(X\) et un déphasage \(\Phi\). Les valeurs de l’amplitude et du déphasage sont, tous calculs faits :

\[
X = \frac{F}{k} \times FAD, \text{ avec } FAD = \left[(1 - \beta^2)^2 + (2\xi\beta)^2 \right]^{-\frac{1}{2}}
\]

\[
\Phi = \arctan \left[\frac{-2\xi\beta}{1 - \beta^2} \right]
\]

Le Facteur d’Amplification Dynamique (FAD), noté encore \(G = \left[(1 - \beta^2)^2 + (2\xi\beta)^2 \right]^{-\frac{1}{2}}\) devient à la résonance \((\beta = 1)\), \(G = \frac{1}{2\xi}\). Cette valeur n’est pas tout à fait la valeur maximale, comme on peut le démontrer en annulant la dérivée \(\frac{dX}{d\beta}\); on trouve :

\[
\beta_{(FAD_{max})} = \sqrt{1 - 2\xi^2}; \ G_{max} = \frac{1}{2\xi\sqrt{1-\xi^2}}
\]

Les figures suivantes montrent le FAD, ainsi que la variation brutale du déphasage à la résonance.
1.3. ÉTUDE DE LA RÉPONSE EN MOUVEMENT FORCÉ HARMONIQUE

En conclusion, on peut comparer la partie transitoire et permanente de la réponse d’un système masse-ressort sous-amorti :

Remarque : Pour le système sur-amorti ($\xi > 1$), on obtient des résultats similaires mais dans ce cas la notion de résonance n’apparaît pas clairement : il n’y a pas de pic du FAD, il est toujours décroissant.

1.3.3 Distinguo force ou déplacement imposé

Dans le cas de vibrations forcées par un déplacement imposé, par exemple $A(t) = A \sin(\Omega t)$, on montre que la solution se met sous une forme similaire au cas précédent : $x(t) = X \sin(\Omega t + \Phi)$ avec $X = A \times FAD$; FAD et Φ identiques au cas précédent.
Le FAD s’interprète alors toujours comme le facteur d’amplification par rapport à la solution quasi-statique.
Chapitre 2

Systèmes discrets à deux degrés de liberté (2DDL)

2.1 Équations de la dynamique

Étudions le cas particulier suivant :

En appliquant successivement aux deux masses le théorème de la résultante cinétique (équation de la dynamique), on obtient :

\[
\begin{align*}
2m \ddot{x}_1 &= -kx_1 - k(x_1 - x_2) + F_1 \\
m \ddot{x}_2 &= -kx_2 - k(x_2 - x_1) + F_2
\end{align*}
\]

\[
\begin{align*}
2m \ddot{x}_1 + kx_1 + k(x_1 - x_2) &= F_1 \\
m \ddot{x}_2 + kx_2 + k(x_2 - x_1) &= F_2
\end{align*}
\]

Soit, sous forme matricielle :

\[
\begin{bmatrix}
2m & 0 \\
0 & m
\end{bmatrix}
\begin{bmatrix}
\ddot{x}_1 \\
\ddot{x}_2
\end{bmatrix}
+ \begin{bmatrix}
2k & -k \\
-k & 2k
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
F_1 \\
F_2
\end{bmatrix}
\]

(2.1)

On constate en général, que toutes les inconnues sont dans toutes les équations. On a un système d’équations différentielles du second ordre couplé que l’on ne sait pas résoudre directement en général, on l’écrit de façon condensée :

\[
[M] \{\ddot{x}\} + [K] \{x\} = \{F\}
\]

(2.2)

La matrice $[K]$ est toujours symétrique et, quand on écrit l'équilibre masse par masse comme ici, $[M]$ est alors diagonale (sinon elle n’est même pas symétrique, par exemple si on écrit le PFD pour $2m+m$ et pour m).

2.2 Solutions vibratoires, analyse modale ($\{F\} = \{0\}$)

2.2.1 Rappel

Si on fait subir à un vecteur non nul $\{X\}$ une transformation linéaire de matrice carrée $[T]$, telle que :

$$[T] \{X\} = \lambda \{X\}, \quad \lambda \in \mathbb{R} \quad (2.3)$$

on dit alors que :

- $\{X\}$ est une direction (ou vecteur) propre de $[T]$, l’ensemble forme un sous-espace vectoriel.
- λ est une valeur propre de $[T]$ et on a $[[T] - \lambda [I]] \{X\} = 0$, c.a.d que $\{X\}$ appartient au noyau de $[T] - \lambda [I]$.

2.2.2 Problème aux valeurs propres associé

Dans notre cas, on cherche une solution vibratoire, c’est à dire de la forme :

$$\{X(t)\} = \{X\} \cos(\omega t) \quad (2.4)$$

L’équation de la dynamique, sans second membre, devient : $-\omega^2 [M] \{X\} + [K] \{X\} = \{0\}$, soit $[[K] - \lambda [M]] \{X\} = \{0\}$, avec $\lambda = \omega^2$.

Si l’on prémultiplie les deux termes de cette dernière équation par $[M]^{-1}$, on obtient :

$$[[M]^{-1} [K] - \lambda [I]] \{X\} = \{0\}$$

2.2.3 Résolution du problème aux valeurs propres et vecteurs propres, analyse modale

La recherche des valeurs propres s’écrit :

$$\text{det} \left([[M]^{-1} [K] - \lambda [I]] \right) = 0 \iff \text{det} \left([[M]^{-1} ([K] - \lambda [M])] \right) = 0$$

ou encore : $\text{det} \left([M]^{-1} ([K] - \lambda [M]) \right) = 0$, comme $\text{det} \left([M]^{-1} \right) \neq 0$, on obtient une équation plus simple à résoudre :

$$\text{det} \left([K] - \lambda [M] \right) = 0 \quad (2.5)$$
Dans notre exemple :

\[
[K] - \lambda [M] = \begin{bmatrix} (2k - 2\lambda m) & -k \\ -k & (2k - \lambda m) \end{bmatrix}
\]
d'où le trinôme à résoudre \((2k - 2\lambda m)(2k - \lambda m) - k^2 = 0\), dont les racines sont \(\lambda_1 = \omega_1^2 \approx 0,634\frac{k}{m} et \lambda_2 = \omega_2^2 \approx 2,366\frac{k}{m}\).

Il existe donc deux pulsations propres du système : \(\omega_1 \approx 0,796\sqrt{\frac{k}{m}} et \omega_2 \approx 1,538\sqrt{\frac{k}{m}}\)

Remarque : on montre par ailleurs que les racines du polynôme en \(\lambda\) sont forcément positives.

La recherche des vecteurs propres s'effectue en remplaçant les valeurs propres dans le système d'équations : \([K] \ - \lambda [M] \{X\} = \{0\}.

Dans notre exemple :

Pour \(\lambda = \lambda_1 : \begin{cases} (2 - 2 \times 0,634)kX_1 - kX_2 = 0 \\ -kX_1 - (2 - 0,634)X_2 = 0 \end{cases} \Rightarrow X_2 \approx 0,732X_1

(La seconde équation est identique à la première, et c'est normal…)

Pour \(\lambda = \lambda_2 : (2k - 2 \times 2,366k)X_1 - kX_2 = 0 \Rightarrow X_2 \approx -2,732X_1

(Même remarque)

Les couples \((X_1, X_2)\) sont donc définis à une constante multiplicative près «a». Ce sont les vecteurs propres ou directions propres que nous noterons \(\{\Phi\} :\)

\[
\{\Phi_1\} = \begin{bmatrix} a \\ 0,732a \end{bmatrix}
\]

\[
\{\Phi_2\} = \begin{bmatrix} a \\ -2,732a \end{bmatrix}
\]

Nous avons donc trouvé que le système mécanique peut vibrer selon les modes \(\omega_1, \Phi_1 et \omega_2, \Phi_2 :\)

\[
\text{Mode 1} \quad \text{Mode 2}
\]

Fig. 2.2 – Modes de vibrations

On fixera pour la suite \(a = 1\). Les résultats que nous allons établir ne dépendent pas de cette valeur fixée arbitrairement.

Nous venons de déterminer les pulsations propres et les vecteurs propres du système ; cette opération, qui ne fait pas intervenir le chargement, est désignée sous le terme d’analyse modale.

2.2.4 M et K orthogonalité, raideurs et masses modales

Démonstration (non détaillé au tableau) :
On a, par définition :
\[
\begin{align*}
[K] \{\Phi_1\} - \omega_1^2 [M] \{\Phi_1\} &= 0 \\
[K] \{\Phi_2\} - \omega_2^2 [M] \{\Phi_2\} &= 0
\end{align*}
\]

En multipliant à gauche par les vecteurs propres transposés ces équations on peut obtenir les deux équations suivantes :
\[
\begin{align*}
\{\Phi_2\}^t 1^{re} \text{ligne} - \{\Phi_1\}^t 2^{me} \text{ligne} &= 0 \\
\omega_2^2 \{\Phi_2\}^t 1^{re} \text{ligne} - \omega_1^2 \{\Phi_1\}^t 2^{me} \text{ligne} &= 0
\end{align*}
\]

Si les opérateurs K et M sont symétriques (ce que l’on peut assurer en écrivant le principe fondamental de la dynamique masse par masse) on obtient :
\[
\begin{align*}
(\omega_2^2 - \omega_1^2) \{\Phi_1\}^t [M] \{\Phi_2\} &= 0 \\
(\omega_2^2 - \omega_1^2) \{\Phi_1\}^t [K] \{\Phi_2\} &= 0
\end{align*}
\]
D’où, à condition que les fréquences propres soient distinctes :
\[
\begin{align*}
\{\Phi_1\}^t [M] \{\Phi_2\} &= 0 \\
\{\Phi_1\}^t [K] \{\Phi_2\} &= 0
\end{align*}
\]

On dit que les vecteurs propres sont [K] et [M] orthogonaux, il est à noter qu’ils ne sont pas orthogonaux simplement entre-eux.

D’autre part, en écrivant \(\{\Phi_1\}^t 1^{re} \text{ligne}\), on obtient :
\[
\omega_1^2 = \frac{\{\Phi_1\}^t [K] \{\Phi_1\}}{\{\Phi_1\}^t [M] \{\Phi_1\}} = \frac{k_1}{m_1}
\]

Ce qui permet de définir la «masse modale» \(m_1\) et la «raideur modale» \(k_1\) associés au mode 1, par analogie avec les résultats obtenus pour les systèmes à un degré de liberté. Ce rapport est appelé quotient de Rayleigh.

Dans notre exemple :
- on peut vérifier la [K] et [M] orthogonalité des deux vecteurs propres
- on trouve (avec \(a = 1\)) :
 \[
 k_1 = 1,607k; \quad m_1 = 2,53m
 \]
 \[
 k_2 = 22,39k; \quad m_2 = 9,46m
 \]

2.2.5 Découplage des équations

Pour découpler le système d’équations, on utilise la matrice des vecteurs propres pour réaliser le changement de variable suivant :
\[
\{x\} = \begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix} \{q\} = [\Phi] \{q\}
\]
2.2. SOLUTIONS VIBRATOIRES, ANALYSE MODALE \(\{F\} = \{0\} \)

On appelle \(\{q\} \) le vecteur des déplacements modaux. La matrice des vecteurs propres est appelée matrice de changement de base entre le domaine physique et le domaine «modal» (attention : elle n’est pas orthogonale). Le principe est de résoudre dans la base modale, dans lequel les matrices sont diagonales, puis de retourner au domaine physique par le changement de variable ci-dessus.

En effet, en remplaçant dans l’expression du système matriciel avec second membre, on obtient :

\[
[M] [\Phi] \{\ddot{q}\} + [K] [\Phi] \{q\} = \{F\}
\]

et, en prémultipliant les deux termes par \([\Phi]^t\) :

\[
[\Phi]^t [M] [\Phi] \{\ddot{q}\} + [\Phi]^t [K] [\Phi] \{q\} = [\Phi]^t \{F\} = \{R\} \tag{2.9}
\]

D’après les propriétés des vecteurs propres citées ci-dessus, on voit apparaître les matrices diagonales suivantes, désignées par les termes de «matrice de masse modale» et «matrice de rigidité modale» :

\[
[\Phi]^t [M] [\Phi] = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} = [m] \tag{2.10}
\]

\[
[\Phi]^t [K] [\Phi] = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix} = [k] \tag{2.11}
\]

(remarque : \([\Phi]^t [K] [\Phi] \) n’est pas un changement de base classique dans la base [\Phi] car ce n’est pas une base orthonormale, ni orthogonale, \([\Phi]^{-1} \neq [\Phi]^t\) en général)

Dès lors, on obtient un système d’équations découpées dans l’espace modal :

\[
\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \{\ddot{q}\} + \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix} \{q\} = [\Phi]^t \{F\} = \{R\} \tag{2.12}
\]

Il suffit ensuite de résoudre successivement chacune des équations :

\[
\begin{aligned}
& m_1 \ddot{q}_1 + k_1 q_1 = \{\Phi_1\}^t \{F\} \\
& m_2 \ddot{q}_2 + k_2 q_2 = \{\Phi_2\}^t \{F\} \tag{2.13}
\end{aligned}
\]

Remarque (plus détaillée en TD) : il est possible de ne pas exciter un mode \(i\) propre en choisissant \(\{F\}\) orthogonal à la forme propre \(\{\Phi_i\}\).

2.2.6 Réponse en mouvement libre \(\{F\} = \{0\} \)

La solution de la ième équation \(m_i \ddot{q}_i + k_i q_i = 0\) est bien connue, elle correspond au masse-ressort non amorti étudié au chapitre précédent, d’où :

\[
q_i(t) = A_i \sin(\omega_i t) + B_i \cos(\omega_i t) \tag{2.14}
\]

Les valeurs \(A_i\) et \(B_i\) sont déterminées à partir des conditions initiales, qui doivent être au nombre de 2 par degré de liberté si l’on veut poser correctement le problème (c’est à dire obtenir une solution unique).

Il suffit ensuite de revenir aux déplacements réels par \(\{x\} = [\Phi] \{q\}\).
Dans notre exemple, nous considérons que le mouvement est dû aux conditions initiales suivantes : \(t = 0; \ x_1 = 1; \ \dot{x}_1 = 0; \ x_2 = 0; \ \dot{x}_2 = 0 \)

Autrement dit, on déplace initialement la première masse de la valeur 1, on retient l’autre et on attend que plus rien ne bouge avant de lâcher l’ensemble.

On connaît la forme des coefficients modaux :

\[
q_1(t) = A_1 \sin(0,796 \sqrt{\frac{k}{m} t}) + B_1 \cos(0,796 \sqrt{\frac{k}{m} t})
\]

\[
q_2(t) = A_2 \sin(1,538 \sqrt{\frac{k}{m} t}) + B_2 \cos(1,538 \sqrt{\frac{k}{m} t})
\]

On peut ensuite revenir aux déplacements physiques :

\[
x_1(t) = q_1(t) + q_2(t)
\]

\[
x_2(t) = 0,732 q_1(t) - 2,732 q_2(t)
\]

L’application des conditions initiales conduit à :

\(A_1 = A_2 = 0 \)

\(B_1 = 0,788; \ B_2 = 0,211 \)

D’où, finalement :

\[
x_1(t) = 0,788 \cos(0,796 \sqrt{\frac{k}{m} t}) + 0,211 \cos(1,538 \sqrt{\frac{k}{m} t})
\]

\[
x_2(t) = 0,577 \cos(0,796 \sqrt{\frac{k}{m} t}) - 0,576 \cos(1,538 \sqrt{\frac{k}{m} t})
\]
2.2.7 Réponse en excitation forcée

On raisonne de même sur les équations découpées et on revient dans l’espace physique.

2.2.8 Cas amorti

En général, on fait l’analyse modale sans amortissement (on ne sait pas vraiment faire avec), puis l’amortissement est artificiellement introduit dans les équations découpées qui correspondent chacune à un système 1DDL, puis on ramène le résultat obtenu dans l’espace réel en utilisant le changement de base associé au système non amorti. Cette méthode donne une bonne approximation pour des systèmes peu amortis, dans le cas de systèmes fortement amortis il faut des propriétés plus fortes sur la matrice d’amortissement (afin de la diagonaliser), ou alors étudier le système dans la base de départ, en effectuant une résolution numérique par petits pas de temps par exemple.
CHAPITRE 2. SYSTÈMES DISCRETS À DEUX DEGRÉS DE LIBERTÉ (2DDL)
Chapitre 3

Systèmes continus : vibrations des poutres

3.1 Vibrations longitudinales des poutres droites

3.1.1 Équation du mouvement (PFD + RC)

Le matériau est supposé élastique, linéaire, isotrope, dans l’hypothèse des petites perturbations (module d’Young E, masse volumique ρ). La poutre est droite, de section constante S, de longueur L.

Les fonctions inconnues sont le déplacement axial $u(x,t)$ et l’effort normal $N(x,t)$ au sens de la théorie des poutres. Ces deux fonctions sont reliées par la loi de Hooke, en notant les dérivées partielles de façon condensée : $\frac{\partial f}{\partial x} = f_x$:

$$N = \sigma S = ESu_{,x} \quad (3.1)$$

En isolant un élément de barre situé entre les sections d’abscisse x et $x+dx$, on peut lui appliquer le principe fondamental de la dynamique :

$$\rho Sdx u_{,tt} \approx (N + N_{,x}dx) - N \quad (3.2)$$

Ces deux dernières équations contiennent les deux fonctions inconnues. On peut, par exemple, éliminer N et on obtient ainsi une « formulation en déplacements » :
Loi de Hooke ⇒ \(N_x = E \sigma_u x \) ⇒ le PFD devient : \(\rho u_{tt} = E u_{xx} \)

3.1.2 Solution générale en mouvement libre

En vibrations libres, l’équation aux dérivées partielles précédente est la célèbre « équation d’ondes » :

\[
 u_{tt} = \frac{E}{\rho} u_{xx} \tag{3.3}
\]

La quantité \(\sqrt{\frac{E}{\rho}} \) représente ainsi la vitesse des ondes au sein du matériau.

Pour l’équation aux dérivées partielles, la méthode de « séparation des variables » est ici possible.

On écrit la fonction inconnue sous la forme d’un produit d’une fonction de l’espace seulement par une fonction du temps seulement :

\[
 u(x, t) = \Phi(x)q(t) \tag{3.4}
\]

En posant :

\[
 c = \sqrt{\frac{E}{\rho}} \tag{3.5}
\]

l’équation d’onde devient :

\[
 \Phi q'' = c^2 q\Phi'' \Rightarrow \frac{q''}{q} = \frac{c^2 \Phi''}{\Phi} = -\omega^2 \quad (c.f. ci-dessous)
\]

Ce qui revient à dire qu’une fonction du temps \(t \) est égale à une fonction de la position \(x \), ce qui n’est possible que si ces fonctions sont des constantes par rapport à \(t \) et \(x \). Notons la constante d’intégration \(-\omega^2 \), on admettra qu’elle est négative pour garantir que les fonctions \(\Phi \) et \(q \) demeurent bornées, ce qui correspond à la réalité physique.

On peut ensuite résoudre successivement l’équation en temps sur \(q(t) \) et l’équation en espace sur \(\Phi(x) \) :

\[
 q'' + \omega^2 q = 0 \rightarrow q(t) = A \sin(\omega t) + B \cos(\omega t)
\]

\[
 \Phi'' + \frac{\omega^2}{c^2} \Phi = 0 \rightarrow \Phi(t) = C \sin(kx) + D \cos(kx) ; \quad \text{avec} \quad k = \frac{\omega}{c} , \quad \text{le nombre d’onde}
\]

La solution générale, pour tout tronçon homogène de poutre droite en vibrations longitudinales, s’écrit finalement :

\[
 u(x, t) = \left[C \sin \left(\omega \sqrt{\frac{\rho}{E}} x \right) + D \cos \left(\omega \sqrt{\frac{\rho}{E}} x \right) \right] \left[A \sin(\omega t) + B \cos(\omega t) \right] \tag{3.6}
\]

\(\omega, C \) et \(D \) seront déterminées par les conditions aux limites,
\(A \) et \(B \) seront déterminées par les conditions initiales.
3.1.3 Cas de la poutre encastrée-libre

Les conditions aux limites s’écrivent :
- en $x = 0$, $u(0,t) = 0$ ⇔ $\Phi(0)q(t) = 0$, $\forall t$ ⇔ $\Phi(0) = 0$ ⇒ $D = 0$
- en $x = L$, $N(L,t) = 0$ ⇔ $ES\Phi'(L)q(t) = 0$, $\forall t$ ⇔ $\Phi'(L) = 0$

Cette dernière condition conduit à une équation en ω, dont la résolution conduit à la détermination des pulsations propres :

$$C\omega \sqrt{\frac{p}{E}} \cos \left(\omega \sqrt{\frac{p}{E}} L \right) = 0 \Rightarrow \cos \left(\omega \sqrt{\frac{p}{E}} L \right) = 0$$

La présence d’une fonction circulaire (cosinus) implique qu’il existe un nombre infini de pulsations propres, dont l’expression est :

$$\omega_n = (2n - 1) \frac{\pi}{2L} \sqrt{\frac{E}{\rho}}, n = 1, 2, ...$$ \hspace{1cm} (3.7)

Les formes propres associées, définies à une constante près C, sont :

$$\Phi_n(x) = \sin \left[(2n - 1) \frac{\pi x}{2L} \right]$$ \hspace{1cm} (3.8)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{formes_propries.png}
\caption{Fig. 3.2 – formes propres}
\end{figure}

3.1.4 Autres cas de conditions aux limites (c.f. TD)

À partir de la solution générale, d’autres cas de conditions aux limites peuvent être étudiés de manière similaire : poutre libre-libre, poutre encastrée-encastrée, poutre encastrée + masse à une
extrémité, poutre portant une masse à chaque extrémité...
- cas libre-libre : \(\omega_n = \frac{n\pi}{L} \sqrt{\frac{E}{\rho}} ; \Phi_n(x) = D_n \cos \left[\frac{n\pi x}{L} \right] \)
- cas encastré-encastré : \(\omega_n = \frac{n\pi}{L} \sqrt{\frac{E}{\rho}} ; \Phi_n(x) = C_n \sin \left[\frac{n\pi x}{L} \right] \)

3.1.5 Vibrations forcées

\[
\text{Fig. 3.3 – Poutre en vibrations harmonique, en traction}
\]

Non traité...

3.2 Vibrations transversales des poutres droites

3.2.1 Équation du mouvement (PFD + RC)

Le matériau est supposé élastique, linéaire, isotrope, dans l’hypothèse des petites perturbations (module d’Young \(E \), masse volumique \(\rho \)). La poutre est droite, de section d’aire constante \(S \), d’inertie constante \(I \), de longueur \(L \), et fléchit dans le plan \(xy \) (rotation des sections autour de l’axe \(z \)).

\[
\text{Fig. 3.4 – Système 1D, poutre en flexion}
\]

\[
\text{Fig. 3.5 – Système 1D, poutre en flexion}
\]
Les fonctions inconnues sont le déplacement transversal, ou « flèche », \(v(x, t) \) l’effort tranchant \(T(x, t) \) et le moment fléchissant \(M(x, t) \) au sens de la théorie des poutres. Ces fonctions sont reliées par les relations classiques d’Euler-Bernouilli :

\[
M = EIv_{xx}
\]
(3.9)

Le théorème de la résultante cinétique (loi de la dynamique) s’écrit :

\[
\rho Sdxv_{tt} \approx -T + (T + T_xdx)
\]

\[\Leftrightarrow \rho S v_{tt} = T_x \]
(3.10)

Le théorème du moment cinétique au point \(G(x + dx) \) s’écrit, si on néglige l’énergie cinétique de rotation, \(\alpha \) désignant la rotation de la section droite :

\[
Tdx + (M + M_xdx) - M = \rho I \alpha_{tt} \approx 0
\]

\[\Leftrightarrow T = -M_x \]
(3.11)

\[\Rightarrow T_x = -M_{xx} = -EIv_{x^4} \]

En remplaçant dans l’équation de la résultante cinétique, on obtient l’équation d’onde :

\[
EIv_{x^4} + \rho Sv_{t^2} = 0
\]
(3.12)

3.2.2 Solution générale en mouvement libre

Comme pour le cas précédent, on utilise la méthode de séparation des variables, on pose donc :

\[
v(x, t) = \Phi(x)q(t) \]

(3.13)

L’équation d’onde donne, de la même façon que pour les vibrations longitudinales :

\[
\frac{EI \Phi'''}{\rho S \Phi} = -\frac{q''}{q} = -\omega^2
\]

La fonction du temps est donc toujours de la forme :

\[
q'' + \omega^2 q = 0 \rightarrow q(t) = A \sin(\omega t) + B \cos(\omega t)
\]

Par contre la fonction d’espace fait intervenir l’équation du quatrième ordre : \(\Phi''' - \frac{\rho S \omega^2}{EI} \Phi = 0 \).

En posant :

\[
\beta = \sqrt[4]{\frac{\rho S}{EI}} \omega^2
\]
(3.14)
On peut écrire la forme suivante :

\[
\Phi(x) = C \sin(\beta x) + D \cos(\beta x) + E \sinh(\beta x) + F \cosh(\beta x)
\]

La solution générale s’écrit :

\[
v(x, t) = (C \sin(\beta x) + D \cos(\beta x) + E \sinh(\beta x) + F \cosh(\beta x)) (A \sin(\omega t) + B \cos(\omega t)) \quad (3.15)
\]

\(A\) et \(B\) sont déterminés par les conditions initiales.
\(C, D, E, F, \omega\) sont déterminés par les conditions aux limites.

Ces conditions aux limites peuvent être du type :
- extrémité libre : \(T = 0 \Rightarrow \Phi''' = 0\) ; \(M = 0 \Rightarrow \Phi'' = 0\)
- appui simple : \(v = 0 \Rightarrow \Phi = 0\) et \(M = 0 \Rightarrow \Phi'' = 0\)
- encastrement : \(v = 0 \Rightarrow \Phi = 0\) et \(v_x = 0 \Rightarrow \Phi' = 0\)
- masse ponctuelle en bout : c.f. TD.
- raideur ponctuelle en bout : c.f. TD.

3.2.3 Cas de la poutre encastrée-libre

Rappelons les 4 conditions aux limites :
- en \(x = 0\) : \(v = 0 \Leftrightarrow \Phi(0) = 0\) et \(v_x = 0 \Leftrightarrow \Phi'(0) = 0\)
- en \(x = L\) : \(T = 0 \Leftrightarrow \Phi'''(L) = 0\) et \(M = 0 \Leftrightarrow \Phi''(L) = 0\)

En posant : \(X = \beta L\) et en rappelant que \(\omega = \beta^2 \sqrt{\frac{EI}{\rho S}}\), on obtient un système de 4 équations à 4 inconnues :

\[
\begin{pmatrix}
\beta C & + & \beta E \\
-\beta^2 C \sin X & -\beta^2 D \cos X & +\beta^2 E \sinh X & +\beta^2 F \cosh X \\
-\beta^3 C \cos X & \beta^3 D \sin X & +\beta^3 E \cosh X & +\beta^3 F \sinh X
\end{pmatrix} = 0
\]

(rappel : \(\sinh(0) = 0\); \(\cosh(0) = 1\); \(\frac{\partial \sinh(\beta x)}{\partial x} = \beta \cosh(\beta x)\))

Ce système peut être réduit, le résultat est :

\[
\begin{pmatrix}
(C \sinh X + \sin X)C + (\cos X + \cosh X)D \\
(C \cos X + \cosh X)C + (\sinh X - \sin X)D
\end{pmatrix} = 0 \quad et \quad \begin{cases} E = -C \\ F = -D \end{cases}
\]

Comme : \(\cosh^2 X - \sinh^2 X = 1\), on obtient finalement la condition issue des conditions aux limites qui donnera les pulsations propres :

\[det[matrice] = 0 \Leftrightarrow \cosh X \cos X + 1 = 0\]
3.2. VIBRATIONS TRANSVERSALES DES POUTRES DROITES

Cette équation admet un nombre de racines infini. Si X_k est une de ces solutions, on définir les notations : $\beta_k = \frac{X_k}{L}$ et $\omega_k = \frac{X_k^2}{L^2} \sqrt{\frac{EI}{\rho S}}$

Les résultats pour les premiers modes sont :

$X_1 = 1,875; X_2 = 4,694; X_3 = 7,854; X_4 = 11,1; X_5 = 14,14; ...$

Le mode propre k s’écrit donc, en utilisant toutes les équations issues des conditions aux limites :

$$\Phi_k(x) = C_k (\sin(\beta_k x) - \sinh(\beta_k x)) + D_k (\cos(\beta_k x) - \cosh(\beta_k x))$$

3.2.4 Autres cas de conditions aux limites (c.f. TD)

En procédant de manière analogue, on aboutirait aux équations en X suivantes :

- cas appuyé-appuyé : $\sin X = 0 \Rightarrow X_1^2 = 9,869; X_2^2 = 39,47; ...$
- cas encastré-encastré et libre-libre : $\cosh X \cos X = 1 \Rightarrow X_1^2 = 22,37; X_2^2 = 61,67; ...$
- cas encastré-appuyé et appuyé-encastré : $\tan X - \tanh X = 0 \Rightarrow X_1^2 = 15,41; X_2^2 = 49,96; ...$
- cas avec masse ponctuelle en bout : c.f. TD.
- cas avec raideur ponctuelle : c.f. TD.
Chapitre 4

Méthodes énergétiques : solutions approchées (initiation aux éléments finis)

4.1 Préliminaire : illustration de calculs par éléments finis

Considérons le calcul associé à une poutre encastrée-libre. Prenons les paramètres suivants dans le logiciel RdM6 : poutre encastrée-libre, discrétisation en 20 éléments, calcul des 20 premiers modes propres :

Fig. 4.1 – résultats de calculs par éléments finis

Les premiers modes semblent correct, mais les modes d’ordre élevé montrent des déformations incohérentes.

Les ruptures de pente, ou de courbure, semblent incohérentes avec les poutres en flexion. On s’attendait à des déformées du type sinus, cosinus, cosh, sinh.

Les conditions d’encastrement ne sont pas rigoureusement vérifiées (pente non nulle à l’origine)

D’où les questions : quelle type d’approximation est fait dans un calcul EF ?, et comment maîtriser la précision du calcul ?
4.2 Théorème de l’énergie cinétique

Les méthodes éléments finis sont basées sur le calcul des énergies, nous allons donc poser les bases de ces calculs.

Il exprime la conservation de l’énergie. Entre deux états, la variation d’énergie cinétique est égale à la somme du travail des forces extérieures et du travail des forces intérieures (dûs à la déformation), pour amener le système de l’état 1 à l’état 2.

\[\Delta E_c = W_{\text{int}} + W_{\text{ext}} \] (4.1)

Pour illustrer cette relation on peut faire l’expérience suivante : Sur un vélo a grande vitesse le conducteur souhaite ralentir. S’il serre modérément les freins, le travail des forces intérieures fait chauffer les freins et permet de diminuer l’énergie cinétique. S’il serre les freins très fort, les freins ne chauffent plus mais c’est sur les pneus maintenant que le travail des forces extérieures fait chauffer la gomme. On voit ainsi l’importance des deux travaux pour faire varier l’énergie cinétique d’un système.

On considère maintenant, du fait que le système est élastique, que l’énergie interne dérive d’un potentiel :

\[W_{\text{int}} = -\Delta E_d \] (4.2)

\(E_d \) est l’énergie de déformation élastique et le signe (-) provient de la nature “résistante” du travail interne.

Donc \(\Delta E_c = -\Delta E_d + W_{\text{ext}} \) ou encore \(\Delta(E_c + E_d) = W_{\text{ext}} \)

Dans le cas de vibrations libres, \(W_{\text{ext}} = 0 \Rightarrow E_c + E_d = \text{Constante} \)

\[\frac{d}{dt}(E_c + E_d) = 0 \] (4.3)

Pour illustrer cette relation on peut étudier un simple système masse ressort en vibration libres. Quand le ressort est comprimé au maximum, la masse est arrêtée, toute l’énergie est sous forme de déformation dans le ressort. Quand le ressort est revenu à sa longueur à vide, la masse est en pleine vitesse, toute l’énergie est sous forme cinétique. La vibration du système est un échange périodique entre ces deux formes d’énergie.

4.3 Énergie de quelques composants

Afin de se familiariser avec la façon dont se distribue l’énergie cinétique et de déformation dans un système en vibration, on va détailler l’énergie de quelques composants.

Pour un état de déformation \(\varepsilon \) correspondant à un état de contrainte \(\sigma \) (la loi de Hooke s’écrit \(\sigma = E\varepsilon \)), on admet les formes générales suivante :

\[E_d = \frac{1}{2} \int_{\Omega} \sigma \varepsilon \, d\Omega \] (4.4)
4.3. ÉNERGIE DE QUELQUES COMPOSANTS

\[E_c = \frac{1}{2} \int_{\Omega} \rho (u,t)^2 \, d\Omega \]
(4.5)

si \(u \) désigne le déplacement.

4.3.1 Ressort

\[E_c = 0 \]
(4.6)

Soit un ressort de raideur \(k \), qui subit un allongement \(x_0 \) sous l’action d’une force \(F_0 \)
on a \(F_0 = kx_0 \) et \(dU = Fdx \), en considérant que l’on charge progressivement le ressort il vient :

\[E_d = \int_0^{x_0} F \, dx = \frac{1}{2} kx_0^2 = \frac{1}{2} \frac{1}{k} F_0^2 = \frac{1}{2} F_0 x_0 \]
(4.7)

On exprime ici simplement le travail reçu par le ressort lors de son écrasement.

4.3.2 Masse

\[E_c = \frac{1}{2} M (u_x)^2 \]
(4.8)

\[E_d = 0 \]
(4.9)

4.3.3 Poutre en élongation

Tous les points de la même section courante présentent le même déplacement axial \(u \)

\[E_c = \frac{1}{2} \int_{\Omega} \rho (u,t)^2 \, d\Omega = \frac{1}{2} \int_0^L \rho S (u,t)^2 \, dx \]
(4.10)

On constate donc que les noeuds de vibration n’apportent pas d’énergie cinétique, alors que les
ventres de vibration oui.

\[E_d = \frac{1}{2} \int_{\Omega} \sigma \epsilon \, d\Omega = \frac{1}{2} \int_0^L \int_S E \epsilon \epsilon \, dS \, dx = \frac{1}{2} \int_0^L ES (u_x)^2 \, dx \]
(4.11)

On constate que les zones à faible déformation (par exemple le bord libre d’une poutre encastrée-libre) n’apporte pas d’énergie de déformation, alors que les zones à forte déformation (par exemple l’encastrément) oui. De façon plus générale on peut définir des noeuds et des ventres de déformation sur une poutre en vibrations libres de traction-compression.

En conclusion, l’énergie de déformation et l’énergie cinétique sont distribuées inéquitablement le long de la poutre, mais la somme des deux est constante pendant la vibration, ce qui généralise notre raisonnement initial sur la vibration du masse-ressort.
4.3.4 Poutre en flexion

Les points de la section courante ont un déplacement axial noté \(u \); tous les points de cette section ont le même déplacement transversal (flèche) noté \(v \). On a :

\[
E_c = \frac{1}{2} \int_{\Omega} \rho \left(\frac{\partial v}{\partial t} \right)^2 d\Omega = \frac{1}{2} \int_0^L \rho S \left(\frac{\partial v}{\partial t} \right)^2 dx
\]

(4.12)

On constate de même que précédemment les noeuds de vibration n’apportent pas d’énergie cinétique, alors que les ventres de vibration oui. On a :

\[
E_d = \frac{1}{2} \int_{\Omega} \sigma \epsilon d\Omega = \frac{1}{2} \int_0^L \int_S E \epsilon \epsilon dS dx = \frac{1}{2} \int_0^L \int_S E (-y \alpha_x)^2 dS dx
\]

En effet : \(\epsilon = \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} (-\alpha y) = -y \frac{\partial \alpha}{\partial x} \) si \(\alpha \) est la rotation de la section en hypothèse des petites déformations (\(\tan \alpha \approx \alpha \))

D’autre part : \(\alpha = v_x \) (hypothèse d’Euler-Bernoulli)

En définissant l’inertie de la section par \(I = \int_S y^2 dS \), il vient :

\[
E_d = \frac{1}{2} \int_0^L EI (v_{xx})^2 dx
\]

(4.13)

On constate que les zones à faible courbure (par exemple le bord libre d’une poutre encastrée-libre) n’apportent pas d’énergie de déformation, alors que les zones à forte courbure (par exemple l’encastrement) oui. De façon plus générale on peut définir des noeuds et des ventres de courbure sur une poutre en vibrations libres de flexion.

![Fig. 4.2 – déformation de flexion](image)

![Fig. 4.3 – hypothèse d’Euler-Bernoulli](image)
4.3.5 Poutre en torsion

De la même manière que précédemment, si on définit la quantité \(I_0 = \int_S (y^2 + z^2) dS \), et en désignant par \(\theta \) l’angle de torsion, on obtient :

\[
E_d = \frac{1}{2} \int_0^L GI_0 (\theta, x)^2 \, dx \\
E_c = \frac{1}{2} \int_0^L \rho I_0 (\theta, t)^2 \, dx
\]

(4.14) \hspace{1cm} (4.15)

4.4 Méthode de Rayleigh

La méthode de Rayleigh est originellement une méthode énergétique de détermination analytique de la première fréquence propre du système. La méthode de Rayleigh-Ritz permettait souvent en pratique d’avoir une valeur approchée de la première fréquence propre.

Ces méthodes ne sont pratiquement plus utilisées à l’heure actuelle en raison des calculs souvent fastidieux qu’elles entraînent ; on leur préfère une résolution numérique par la méthode des “Éléments Finis” (voir ci-dessous). Néanmoins cette méthode est une très bonne entrée en matière pour comprendre les éléments finis.

4.4.1 Principe de la méthode

La marche à suivre consiste à :

– Se donner arbitrairement une fonction \(\Phi(x) \), à partir de la déformée statique ou d’un polynôme, satisfaisant les conditions aux limites d’encastrement.

– Exprimer, pour chacune des pièces composant le mécanisme, les énergies \(E_c \) et \(E_d \). Les calculs faits à partir des formulations établies précédemment et utilisant la fonction de déplacement selon : \(u(x,t) = \Phi(x)U(t) \), ce qui conduit systématique aux formes \(E_d = A \dot{U}(t) \) et \(E_c = B \ddot{U}(t) \)

– Appliquer aveuglément la formule de l’équation du théorème de l’énergie cinétique, ce qui fournit une équation différentielle dont la solution apporte une pulsation propre.

En effet,

\[
\frac{d}{dt}(E_c + E_d) = 2B\ddot{U} + 2AU = 0
\]

\[
\ddot{U} + \frac{A}{B} U = 0
\]

La solution possède la pulsation \(\omega = \sqrt{\frac{A}{B}} \)

On montre en pratique que si \(\Phi(x) \) est exactement une forme propre, alors la pulsation obtenue est exactement la fréquence propre associée. En pratique on obtient une approximation.

La principale difficulté réside dans l’obtention d’une fonction de déplacement qui donnera une bonne approximation de la fréquence propre. On se donne en général une forme qui permet de retrouver la déformée statique, à partir du fait que le premier mode propre a généralement une allure assez proche de cette déformée statique.
4.5 Méthode des Éléments Finis

La méthode des éléments finis peut alors se comprendre comme une généralisation de la méthode précédente, apportant plus de précision et de souplesse dans l’utilisation.

4.5.1 Interpolation

Considérons l’exemple de la poutre en élongation. Cette poutre est modélisée par un segment de longueur L porté par l’axe x ; la valeur de la fonction inconnue (le déplacement axial u) est déterminée seulement aux deux “noeuds” positionnés à chacune des extrémités de l’élément. La fonction $u(x, t)$ en un point courant est interpolée à partir de sa valeur aux noeuds :

$$u(x, t) = \Phi_1(x)u_1(t) + \Phi_2(x)u_2(t) \{\Phi^t \{U\}$$

$\{\Phi^t \{x\}}$ est la matrice (ligne ici) des fonctions d’interpolation

$\{U\} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ est le vecteur (inconnu) des déplacements nodaux

Pour déterminer les fonctions d’interpolation, on dispose des conditions :
- quand $x = 0$, $u = u_1$
- quand $x = L$, $u = u_2$

On se donne une forme polynomiale à 2 termes, c’est-à-dire $u = ax + b$. L’application des deux conditions aux limites conduit à $u = \frac{u_2 - u_1}{L}x + u_1 = u_1(1 - \frac{x}{L}) + u_2 \frac{x}{L}$.

Par identification dans la formule d’interpolation :

$$\{\Phi^t \{x\}} = \begin{bmatrix} 1 - \frac{x}{L} \\ \frac{x}{L} \end{bmatrix}$$

![Fig. 4.4 – Fonctions de forme associées à un élément](image)

De façon plus générale on peut construire ainsi une fonction linéaire par morceaux :
C’est l’approximation qui est faite par le calcul par éléments finis, d’où l’aspect du mode 50. Pour limiter l’aspect discontinu de la déformation il faut donc, soit discrétiser plus finement, soit utiliser des polynomes de degrés supérieurs par exemple.

4.5.2 Énergie cinétique et énergie de déformation

Énergie cinétique : \(E_c = \frac{1}{2} \int \rho S (u_x)^2 \, dx \)

avec : \(u = \{ \Phi \}^t \{ U \} \)

donc :

\[
u_x = \{ \Phi \}^t \{ \ddot{U} \} (\text{les fonctions d’interpolation ne dépendent pas du temps})
\]

\[
(u_x)^2 = \{ \dot{\Phi} \}^t \{ \Phi \} \{ \dot{\Phi} \}^t \{ U \}
\]

D’où :

\[
E_c = \frac{1}{2} \{ \dot{U} \}^t \int_0^L \rho S \{ \Phi \} \{ \dot{\Phi} \} \, dx \{ \dot{U} \} = \frac{1}{2} \{ \dot{U} \}^t [M] \{ \dot{U} \} \quad (4.17)
\]

La matrice de masse \([M]\) peut être explicitée complètement :

\[
[M] = \int_0^L \rho S \{ \Phi \} \{ \dot{\Phi} \} \, dx = \rho S \int_0^L \left[\frac{(1 - \frac{x}{L})^2}{L} \frac{x}{L} \left(1 - \frac{x}{L} \right) \left(\frac{x}{L} \right)^2 \right] dx = \frac{\rho S L}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}
\]

Énergie de déformation : \(E_d = \frac{1}{2} \int_0^L ES (u_x) \, dx \)

\[
u_{xx} = \{ \dot{\Phi} \}^t \{ U \}
\]

\[
(u_{xx})^2 = \{ U \}^t \{ \ddot{\Phi} \} \{ \dot{\Phi} \}^t \{ U \}
\]

D’où :

\[
E_d = \frac{1}{2} \{ U \}^t \int_0^L ES \{ \dot{\Phi} \} \{ \dot{\Phi} \}^t \, dx \{ U \} = \frac{1}{2} \{ U \}^t [K] \{ U \} \quad (4.18)
\]

La matrice de rigidité \([K]\) peut être explicitée :

\[
[K] = \int_0^L ES \{ \dot{\Phi} \} \{ \dot{\Phi} \}^t \, dx = ES \int_0^L \begin{bmatrix} \left(-\frac{1}{L}\right)^2 & \left(-\frac{1}{L}\right)^2 \\ \left(-\frac{1}{L}\right)^2 & \left(-\frac{1}{L}\right)^2 \end{bmatrix} \, dx = \frac{ES}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}
\]
4.5.3 Système matriciel

Par application de l'équation du théorème de l'énergie cinétique :
\[
\frac{d}{dt}(E_c) = [M]\{\dot{U}\}\{\ddot{U}\}
\]
\[
\frac{d}{dt}(U) = [K]\{U\}\{\dot{U}\}
\]
\[
\frac{d}{dt}(E_c + U) = 0 \Rightarrow [M]\{\ddot{U}\} + [K]\{U\} = 0
\] (4.19)

On retrouve un système matriciel analogue à celui qui a été présenté au chapitre 2. La suite (analyse modale, réponse) est traité (numériquement) de la même manière que pour les systèmes à 2 degrés de liberté.

La résolution par élément finis se base donc sur cette représentation matricielle, considérons alors une résolution numérique de notre poutre encastrée-libre avec un élément.

Le logiciel nous informe qu'il a alors à faire avec un système à 3 degrés de liberté. Il s'agit des fonctions \(\Phi_1\) et \(\Phi_2\) précédente, plus une fonction \(\Phi_3\) correspondant à de traction-compression. On observe le premier mode, le deuxième mode n'a pas de sens physique, le troisième mode correspond au mode de traction-compression.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig_4_6.png}
\caption{Calcul avec 1 élément (3DDL)}
\end{figure}

Effectuons ensuite un calcul avec 2 éléments, ce qui permettra d'avoir une déformée avec deux segments de droite. Le deuxième mode apparaît clairement, même s'il semble grossièrement approché.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig_4_7.png}
\caption{Calcul avec 1 élément (3DDL)}
\end{figure}

Par comparaison les résultats obtenus avec un calcul beaucoup plus fin montrent que l'on a très rapidement des approximations de bonne qualité. Le premier mode à 105Hz est obtenu à 1% près avec un seul élément (3DDL), le second mode à moins de 1% aussi avec deux éléments... il n'est pas
forcément rentable de faire un calcul avec des milliers d’éléments pour une simple poutre. En pratique il faut faire un calcul grossier et rapide, puis affiner ensuite jusqu’à ce que le résultat n’évolue plus sensiblement.
CHAPITRE 4. MÉTHODES ÉNERGÉTIQUES : SOLUTIONS APPROCHÉES (INITIATION AUX ÉLÉMENTS FINIS)
Table des figures

1.1 modèle 1DDL ... 5
1.2 Circuit RLC Série .. 6
1.3 Solution sur-amortie (non vibratoire) 7
1.4 Solution sous-amortie .. 8
1.5 Évolution du FAD non amorti en fonction du rapport des fréquences . . 9
1.6 FAD et déphasage .. 11
1.7 Comparaison régime transitoire et établi 11

2.1 Système à 2DDL .. 13
2.2 Modes de vibrations .. 15
2.3 Solution dans la base modale ... 18
2.4 Solution dans la base physique ... 19

3.1 Système 1D, poutre en traction ... 21
3.2 formes propres ... 23
3.3 Poutre en vibrations harmonique, en traction 24
3.4 Système 1D, poutre en flexion ... 24
3.5 Système 1D, poutre en flexion ... 24
3.6 Tracé de cosh(X) cos(X) .. 27
3.7 formes propres ... 27

4.1 résultats de calculs par éléments finis 29
4.2 déformation de flexion .. 32
4.3 hypothèse d'Euler-Bernoulli ... 32
4.4 Fonctions de forme associées à un élément 34
4.5 Fonctions de forme pour N éléments 35
4.6 Calcul avec 1 élément (3DDL) ... 36
4.7 Calcul avec 1 élément (3DDL) ... 36